p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.297C23, C4.1702+ 1+4, (C8×D4)⋊46C2, C8⋊6D4⋊41C2, C8⋊9D4⋊41C2, C4⋊C8⋊52C22, (C4×C8)⋊61C22, C22≀C2.5C4, C4⋊D4.24C4, C24.87(C2×C4), C8⋊C4⋊31C22, C22⋊Q8.24C4, C22⋊C8⋊80C22, (C2×C8).434C23, (C2×C4).673C24, (C22×C8)⋊56C22, C22.4(C8○D4), C24.4C4⋊37C2, (C4×D4).300C22, C22.D4.8C4, C2.29(Q8○M4(2)), (C2×M4(2))⋊47C22, (C23×C4).532C22, C23.150(C22×C4), C22.197(C23×C4), C42⋊C2.85C22, (C22×C4).1282C23, C42.7C22⋊26C2, C22.19C24.12C2, C2.47(C22.11C24), C2.28(C2×C8○D4), C4⋊C4.167(C2×C4), (C2×C22⋊C8)⋊47C2, (C2×D4).182(C2×C4), C22⋊C4.19(C2×C4), (C2×C4).79(C22×C4), (C2×Q8).122(C2×C4), (C22×C8)⋊C2⋊32C2, (C22×C4).354(C2×C4), (C2×C4○D4).93C22, SmallGroup(128,1708)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.297C23
G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=dad=a-1, eae=ab2, bc=cb, bd=db, be=eb, dcd=ece=a2c, ede=b2d >
Subgroups: 348 in 206 conjugacy classes, 126 normal (40 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C22×C8, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C2×C4○D4, C2×C22⋊C8, C24.4C4, (C22×C8)⋊C2, C42.7C22, C8×D4, C8⋊9D4, C8⋊6D4, C22.19C24, C42.297C23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, C8○D4, C23×C4, 2+ 1+4, C22.11C24, C2×C8○D4, Q8○M4(2), C42.297C23
(1 19 31 16)(2 9 32 20)(3 21 25 10)(4 11 26 22)(5 23 27 12)(6 13 28 24)(7 17 29 14)(8 15 30 18)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 16)(2 20)(3 10)(4 22)(5 12)(6 24)(7 14)(8 18)(9 32)(11 26)(13 28)(15 30)(17 29)(19 31)(21 25)(23 27)
(1 5)(2 28)(3 7)(4 30)(6 32)(8 26)(9 20)(11 22)(13 24)(15 18)(25 29)(27 31)
G:=sub<Sym(32)| (1,19,31,16)(2,9,32,20)(3,21,25,10)(4,11,26,22)(5,23,27,12)(6,13,28,24)(7,17,29,14)(8,15,30,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16)(2,20)(3,10)(4,22)(5,12)(6,24)(7,14)(8,18)(9,32)(11,26)(13,28)(15,30)(17,29)(19,31)(21,25)(23,27), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,20)(11,22)(13,24)(15,18)(25,29)(27,31)>;
G:=Group( (1,19,31,16)(2,9,32,20)(3,21,25,10)(4,11,26,22)(5,23,27,12)(6,13,28,24)(7,17,29,14)(8,15,30,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16)(2,20)(3,10)(4,22)(5,12)(6,24)(7,14)(8,18)(9,32)(11,26)(13,28)(15,30)(17,29)(19,31)(21,25)(23,27), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,20)(11,22)(13,24)(15,18)(25,29)(27,31) );
G=PermutationGroup([[(1,19,31,16),(2,9,32,20),(3,21,25,10),(4,11,26,22),(5,23,27,12),(6,13,28,24),(7,17,29,14),(8,15,30,18)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,16),(2,20),(3,10),(4,22),(5,12),(6,24),(7,14),(8,18),(9,32),(11,26),(13,28),(15,30),(17,29),(19,31),(21,25),(23,27)], [(1,5),(2,28),(3,7),(4,30),(6,32),(8,26),(9,20),(11,22),(13,24),(15,18),(25,29),(27,31)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 8A | ··· | 8H | 8I | ··· | 8T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C8○D4 | 2+ 1+4 | Q8○M4(2) |
kernel | C42.297C23 | C2×C22⋊C8 | C24.4C4 | (C22×C8)⋊C2 | C42.7C22 | C8×D4 | C8⋊9D4 | C8⋊6D4 | C22.19C24 | C22≀C2 | C4⋊D4 | C22⋊Q8 | C22.D4 | C22 | C4 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 1 | 4 | 4 | 4 | 4 | 8 | 2 | 2 |
Matrix representation of C42.297C23 ►in GL6(𝔽17)
16 | 15 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 15 | 15 | 16 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 | 16 | 16 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 15 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 15 | 15 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 15 | 15 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,15,1,0,0,0,0,0,0,0,16,1,0,0,0,1,0,1,15,0,0,0,0,1,15,0,0,0,0,1,16],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,16,1,0,0,0,0,16,0,0,0,0,1,16,0,0,0,0,0,16,0,1],[16,0,0,0,0,0,15,1,0,0,0,0,0,0,0,1,1,15,0,0,1,0,1,15,0,0,0,0,1,0,0,0,0,0,1,16],[16,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,15,0,0,0,1,0,15,0,0,0,0,16,0,0,0,0,0,0,16] >;
C42.297C23 in GAP, Magma, Sage, TeX
C_4^2._{297}C_2^3
% in TeX
G:=Group("C4^2.297C2^3");
// GroupNames label
G:=SmallGroup(128,1708);
// by ID
G=gap.SmallGroup(128,1708);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,219,675,1018,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=d*a*d=a^-1,e*a*e=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=e*c*e=a^2*c,e*d*e=b^2*d>;
// generators/relations